You must log in to edit PetroWiki. Help with editing

Content of PetroWiki is intended for personal use only and to supplement, not replace, engineering judgment. SPE disclaims any and all liability for your use of such content. More information


Spectral gamma ray logs

PetroWiki
Revision as of 11:58, 24 June 2015 by Denise Watts (Denisewatts) (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The latest variant on the gamma ray log is the spectral gamma ray log. This starts out exactly the same as the standard gross gamma ray count log. Gamma rays from the formation are counted in a detector system. However, there is an added level of sophistication. The energy of the gamma ray captured by the detector is proportional to the brightness of the light pulse it produces, and this brightness, in turn, determines the size of the electrical pulse produced by the photomultiplier. By sorting the pulses from the photomultiplier into bins by their size, a spectrum equivalent to the energy spectrum of the incoming gamma rays is produced. The energy of the gamma rays is determined by which element emitted them.

Identifying the spectrum

As we saw earlier, the energy of a gamma ray depends on its source. Each of the standard naturally occurring radioactive elements (K, U, and Th) gives off a gamma ray of a unique energy when it decays. Potassium gives off only a gamma ray. The other elements give off a gamma ray, then decay to other elements called daughters, which, because they are still radioactive, give off other gamma rays, and so on. This gives rise to the pattern of gamma ray energies in Fig. 1. These are called spectra of the elements and are as unique as fingerprints. It is not surprising that the brightness of a light pulse produced in a scintillator crystal is proportional to the energy of the gamma ray. The amount of current in the electrical pulse from the photomultiplier is in turn proportional to the brightness of the pulse of light. It is a simple matter to sort the pulses coming out of the photomultiplier into bins according to their pulse size before counting them. This is called pulse-height spectrum analysis and gives rise to a histogram of count rates such as those in Fig.1 instead of a single count rate. Common scintillators lack the resolution to break the gamma rays into fine enough bins to reproduce the spectra in Fig. 1, so some sophisticated mathematical deconvolution is needed to infer proportions of uranium, potassium, and thorium from broadly windowed pulse-height spectra.

There are several new things that can be done once we have K, U, and Th count rates rather than just total gamma ray. The most important is that we can produce a count rate only because of potassium and thorium. This is very useful because these elements most often tag only clays, while uranium salts can be associated with moved water. These uranium salts can be precipitated out in porous reservoir rock, especially at the wellbore, where pressure changes may occur. This uranium can produce what appear to be hot sands on a gross gamma ray log. Using the uranium-free gamma ray curve from a spectral tool (CGR, in Schlumberger’s mnemonics) can circumvent this problem and improve sand/shale discrimination in such environments. Occasionally, the ratio of thorium to potassium can be exploited in clay typing. The downside of spectral gamma ray curves is:

  • Reduced count rate
  • Reduced precision

By dividing the spectra into three components, the count rate for any one component may be less than one-third that of the total gamma ray measurement. Further errors occur in the math of deconvolution. If high-precision spectral gamma ray measurements are needed, reduced logging speed is required. The service companies have charts and computer programs that can help in the selection of logging speeds to achieve specific precisions.

Advantages of spectral gamma ray logs

Spectral gamma ray measurements offer several advantages. They can help with clay typing. Variations of the relative amounts of potassium, thorium, and uranium are associated with specific shale minerals. As is so often the case in log analysis, crossplots are used to highlight these differences. Different clay minerals may (sometimes) array themselves in the pie slices of a thorium/potassium crossplot. Clays of different types also may plot in different regions on a crossplot of potassium or the thorium/potassium ratio against Pe, the PE factor. For the mathematically inclined, the same relationships may be captured in an equation of the form

RTENOTITLE....................(1)

For a typical shale, the coefficients are in the ratio of A:B:C=1:2:4. Uranium is more often associated with fluid movement in porous rocks than shale minerals. At the very least, the effects of uranium can be removed. In other cases, potassium may be associated with feldspar rather than shale. Differences in the ratios between the overlying reference shale and the shaly sands may highlight the problems with carrying clay properties from the overlying shale into the shaly-sand interval.

Applications

Spectral natural gamma ray systems designed for K-U-Th logging have been applied to evaluate stimulations and completions.[1] One or more radioactive isotopes tag the various materials sent downhole. From a spectral log that separates the different isotopes, engineers establish the vertical zones of each of the different phases of the treatment. By examining peak-to-Compton-background ratios from the spectra, it is also possible to discriminate material inside the borehole from that outside the borehole. The same data yield a feeling for how far into the formation (remembering that gamma rays penetrate reservoir rocks only approximately 6 in.) the materials extend. By applying directional gamma ray detection schemes, it is also possible to infer fracture direction.

Nomenclature

A = atomic weight
γ = gamma ray tool reading in API units
U = density-weighted F pe

References

  1. Gadeken, L.L. et al. 1991. The Interpretation of Radioactive Tracer Logs Using Gamma Ray Spectroscopy Measurements. The Log Analyst 32 (1): 24.

Noteworthy papers in OnePetro

Use this section to list papers in OnePetro that a reader who wants to learn more should definitely read

External links

Use this section to provide links to relevant material on websites other than PetroWiki and OnePetro

See also

Gamma ray logs

Nuclear log interpretation

Nuclear logging

Nuclear logging while drilling

PEH:Nuclear_Logging