You must log in to edit PetroWiki. Help with editing

Content of PetroWiki is intended for personal use only and to supplement, not replace, engineering judgment. SPE disclaims any and all liability for your use of such content. More information


PCP systems for low productivity wells

PetroWiki
Jump to navigation Jump to search

Low-productivity wells by definition deliver relatively low fluid rates; as a result, operators usually attempt to maximize recovery rates by producing them at low bottomhole pressures. If produced aggressively, the fluid column can be drawn down to very low levels even in some relatively high-productivity wells. These pumped-off conditions can cause pump inflow and gas interference problems that prevent the pump cavities from filling completely with liquid. This results in low volumetric pump efficiency, as illustrated by the field data in Fig. 1.

Overview

Pump inflow problems are common in wells producing viscous fluids under low submergence conditions. With highly viscous fluids, difficulties occur when the pump is operated at a speed that exceeds the rate at which the fluid can flow into and up the narrow pump cavities (cavity flow velocity of the PC pump). Fig. 2 shows, for example, a dramatic decline in pump operating efficiency with higher speed in a heavy oil well application. Although the trend evident in the data can be attributed in part to increased gas interference and reduced well inflow over time, the lower bottomhole pressures and pump inflow constraints definitely contributed to the large decline in efficiency.

Pump operation

Operating a PC pump at low volumetric efficiencies results in reduced heat removal rates, higher elastomer temperatures, and increased fluid slippage, which can substantially escalate wear rates (especially if sand is produced). As a result, continued operation at low volumetric efficiency (< 30%) can lead to significantly reduced pump life. Pump selection is a key consideration in low-productivity wells, given the potential for inflow problems to be mitigated to some degree through the use of a larger-displacement pump run at lower speed (i.e., the resultant higher torque requirements need to be considered). Pump intake designs with minimal flow restrictions are also desirable. In horizontal wells, pump submergence should be maximized by seating the pump intake as low as practical within the well.

The sensitivity of the dynamic fluid level to changes in the produced-fluid rate varies considerably between wells. Extra attention must be paid when implementing speed changes on low-productivity wells that can be pumped off rapidly to avoid damaging the pump. Caution should also be used when basing decisions on fluid-shot data in heavy oil and bitumen applications because it is common for a layer of foamy oil to exist in the annulus, which makes the acoustically measured fluid levels misleading.

References

Use this section for citation of items referenced in the text to show your sources. [The sources should be available to the reader, i.e., not an internal company document.]

Noteworthy papers in OnePetro

Use this section to list papers in OnePetro that a reader who wants to learn more should definitely read

External links

Use this section to provide links to relevant material on websites other than PetroWiki and OnePetro

See also

Progressing cavity pump (PCP) systems

PEH:Progressing_Cavity_Pumping_Systems

Page champions

Category