You must log in to edit PetroWiki. Help with editing

Content of PetroWiki is intended for personal use only and to supplement, not replace, engineering judgment. SPE disclaims any and all liability for your use of such content. More information


Category:6.5.7 Climate change

PetroWiki
Jump to navigation Jump to search

The last IPCC report AR6 WGIII Annex I describes Climate Change as: “A change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings such as modulations of the solar cycles, volcanic eruptions and persistent anthropogenic changes in the composition of the atmosphere or in land use.”[1]In summary, Climate Change refers to the long-term change in the average weather patterns in an area caused by natural reasons or anthropogenic consequences.

We should notice the difference between Climate and Weather. Weather is the specific atmospherical conditions at a particular place during a short period of time (a day, week or even a year). It is made up of specific weather events, for example a particular rainfall, storm or temperature range.

Climate is about expectations and weather is about conditions and events. “Climate is what you expect, weather is what you get”.

Variables

Climate refers to the expected conditions of weather in general time periods (for example day or night, morning, evening, spring, or summer). The most important climate variables are temperature, precipitation, humidity, wind direction and speed, atmospheric pressure, intensity of sun light and cloud cover.

“Climate is determined by the atmospheric circulation and by its interactions with the large- scale ocean currents and the land with its features such as albedo, vegetation and soil moisture. The climate of the Earth as a whole depends on factors that influence the radiative balance, such as for example, the atmospheric composition, solar radiation or volcanic eruptions. To understand the climate of our planet Earth and its variations and to understand and possibly predict the changes of the climate brought about by human activities, one cannot ignore any of these many factors and components that determine the climate. We must understand the climate system, the complicated system consisting of various components, including the dynamics and composition of the atmosphere, the ocean, the ice and snow cover, the land surface and its features, the many mutual interactions between them, and the large variety of physical, chemical and biological processes taking place in and among these components.

The climate system

The climate system is an interactive system consisting of five major components: the atmosphere,[2] the hydrosphere, the cryosphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, the most important of which is the Sun (see Figure below). Also the direct effect of human activities on the climate system is considered an external forcing.”

Atmosphere

The atmosphere is the most unstable and rapidly changing part of the system. Its composition, which has changed with the evolution of the Earth, is of central importance to the problem assessed in this Report. The Earth's dry atmosphere is composed mainly of nitrogen (N2, 78.1% volume mixing ratio), oxygen (O2, 20.9% volume mixing ratio, and argon (Ar, 0.93% volume mixing ratio). These gases have only limited interaction with the incoming solar radiation and they do not interact with the infrared radiation emitted by the Earth. However there are a number of trace gases, such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ozone (O3), which do absorb and emit infrared radiation. These so called greenhouse gases, with a total volume mixing ratio in dry air of less than 0.1% by volume, play an essential role in the Earth's energy budget. Moreover the atmosphere contains water vapour (H2O), which is also a natural greenhouse gas. Its volume mixing ratio is highly variable, but it is typically in the order of 1%. Because these greenhouse gases absorb the infrared radiation emitted by the Earth and emit infrared radiation up- and downward, they tend to raise the temperature near the Earth's surface. Water vapour, CO2 and O3 also absorb solar short-wave radiation. The atmospheric distribution of ozone and its role in the Earth's energy budget is unique. Ozone in the lower part of the atmosphere, the troposphere and lower stratosphere, acts as a greenhouse gas. Higher up in the stratosphere there is a natural layer of high ozone concentration, which absorbs solar ultra-violet radiation. In this way this so-called ozone layer plays an essential role in the stratosphere's radiative balance, at the same time filtering out this potentially damaging form of radiation. Beside these gases, the atmosphere also contains solid and liquid particles (aerosols) and clouds, which interact with the incoming and outgoing radiation in a complex and spatially very variable manner. The most variable component of the atmosphere is water in its various phases such as vapour, cloud droplets, and ice crystals. Water vapour is the strongest greenhouse gas. For these reasons and because the transition between the various phases absorb and release much energy, water vapour is central to the climate and its variability and change.

Hydrosphere

The hydrosphere is the component comprising all liquid surface and subterranean water, both fresh water, including rivers, lakes and aquifers, and saline water of the oceans and seas. Fresh water runoff from the land returning to the oceans in rivers influences the ocean’s composition and circulation. The oceans cover approximately 70% of the Earth’s surface. They store and transport a large amount of energy and dissolve and store great quantities of carbon dioxide. Their circulation, driven by the wind and by density contrasts caused by salinity and thermal gradients (the so-called thermohaline circulation), is much slower than the atmospheric circulation. Mainly due to the large thermal inertia of the oceans, they damp vast and strong temperature changes and function as a regulator of the Earth’s climate and as a source of natural climate variability, in particular on the longer time-scales.

Cryosphere

The cryosphere, including the ice sheets of Greenland and Antarctica, continental glaciers and snow fields, sea ice and permafrost, derives its importance to the climate system from its high reflectivity (albedo) for solar radiation, its low thermal conductivity, its large thermal inertia and, especially, its critical role in driving deep ocean water circulation. Because the ice sheets store a large amount of water, variations in their volume are a potential source of sea level variations

Land surface

Vegetation and soils at the land surface control how energy received from the Sun is returned to the atmosphere. Some is returned as long-wave (infrared) radiation, heating the atmosphere as the land surface warms. Some serves to evaporate water, either in the soil or in the leaves of plants, bringing water back into the atmosphere. Because the evaporation of soil moisture requires energy, soil moisture has a strong influence on the surface temperature. The texture of the land surface (its roughness) influences the atmosphere dynamically as winds blow over the land’s surface. Roughness is determined by both topography and vegetation. Wind also blows dust from the surface into the atmosphere, which interacts with the atmospheric radiation.

Biosphere

The marine and terrestrial biospheres have a major impact on the atmosphere’s composition. The biota influence the uptake and release of greenhouse gases. Through the photosynthetic process, both marine and terrestrial plants (especially forests) store significant amounts of carbon from carbon dioxide. Thus, the biosphere plays a central role in the carbon cycle, as well as in the budgets of many other gases, such as methane and nitrous oxide. Other biospheric emissions are the so-called volatile organic compounds (VOC) which may have important effects on atmospheric chemistry, on aerosol formation and therefore on climate. Because the storage of carbon and the exchange of trace gases are influenced by climate, feedbacks between climate change and atmospheric concentrations of trace gases can occur. The influence of climate on the biosphere is preserved as fossils, tree rings, pollen and other records, so that much of what is known of past climates comes from such biotic indicators.

References

  1. IPCC AR6 WGIII Annex I: Glossary IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.  https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_Annex-I.pdf
  2. Ross, B. 1972. Title for X Conference.

This category currently contains no pages or media.